


## Directions in HCP Crystals

1. To emphasize that they are equal, $\mathbf{a}$ and $\mathbf{b}$ is changed to $\mathbf{a}_{1}$ and $\mathbf{a}_{2}$.
2. The unit cell is outlined in blue
3. A fourth axis is introduced $\left(a_{3}\right)$ to show symmetry.

- Symmetry about $c$ axis makes $a_{3}$ equivalent to $a_{1}$ and $a_{2}$.
- Symmetry about $c$ axis makes $a_{3}$ equiva

4. This 4-coordinate system is used: $\left[a_{1} a_{2}-\left(a_{1}+a_{2}\right) c\right]$


MSE ME 200: Introduction to Engineering Materials
Wlinais ©.D. Johnson 2004, 2006-08 I
Comparing Different Crystallographic Planes

For (220) Miller Indexed planes you are getting planes at $1 / 2,1 / 2, \infty$. The (110) planes are not necessarily (220) planes!

|  | For cubic crystals: | $d_{h k l}=\frac{a}{\sqrt{h^{2}+k^{2}+l^{2}}}$ | Miller Indices provide you easy measure of distance between planes. |
| :---: | :---: | :---: | :---: |
| MSE | MSE 280: Introduction to Engi | reering Materials | ©D.D. Johnson 2004, 2006-08 |

## Directions in HCP Crystals:



Easiest to remember: Find the coordinate axes that straddle vector of interest, and follow along those axes (but divide the $a_{1}, a_{2}, a_{3}$ part of vector by 3 because you are now three times farther out!).

Self-Assessment Test: What is vector C?

| MSE |  |  |  | MSE 280: Introduction to Engineering Materials | ©D.D. Johnson 2004, 2006-08 |
| :--- | :--- | :---: | :---: | :---: | :---: |

Directions in HCP Crystals:


## Miller Indices for HCP Planes

What is the Miller Index of the pink plane?


1. The plane's intercept $\mathbf{a}_{1}, \mathbf{a}_{3}$ and $\mathbf{c}$ at $\mathrm{r}=1, \mathrm{~s}=1$ and $\mathrm{t}=\infty$, respectively.
2. The reciprocals are $1 / \mathrm{r}=1,1 / \mathrm{s}=1$, and $1 / \mathrm{t}=0$.
3. They are already smallest integers.
4. We can write $(\boldsymbol{h} \boldsymbol{k} \boldsymbol{i})=(\mathbf{1} \boldsymbol{?} \mathbf{1} \mathbf{0})$.
5. Using $\boldsymbol{i}=-(\boldsymbol{h}+\boldsymbol{k})$ relation, $\boldsymbol{k}=-\mathbf{2}$.
6. Miller Index is $(1 \overline{2} 10)$

Miller Indices for HCP Planes

4-index notation is more important for planes in HCP, in order to distinguish similar planes rotated by $120^{\circ}$.

## As soon as you see [1100], you will know that it is HCP, and not [110] cubic!



Find Miller Indices for HCP:

1. Find the intercepts, $r$ and $s$, of the plane with any two of the basal plane axes ( $\mathbf{a}_{1}, \mathbf{a}_{2}$, or $\mathbf{a}_{3}$ ), as well as the intercept, $t$, with the $\mathbf{c}$ axes.
Convert reciprocals to smallest integers in same ratios.
Get $\boldsymbol{h}, \boldsymbol{k}, \boldsymbol{i}, \boldsymbol{I}$ via relation $\boldsymbol{i}=-(\boldsymbol{h}+\boldsymbol{k})$, where $h$ is associated with $\mathbf{a}_{1}, k$ with $\mathbf{a}_{2}, i$ with $\mathbf{a}_{3}$, and / with $\mathbf{c}$
2. Enclose 4-indices in parenthesis: (hkil).
MLSE MSE 280: Introduction to Engineering Materials ©D.D. Johnson 2004, 2006-08

Yes, Yes....we can get it without $\mathrm{a}_{3}$ !

1. The plane's intercept $\mathbf{a}_{1}, \mathbf{a}_{2}$ and $\mathbf{c}$ at $\mathrm{r}=1, \mathrm{~s}=-1 / 2$ and $\mathrm{t}=\infty$, respectively.
2. The reciprocals are $1 / r=1,1 / s=-2$, and $1 / t=0$.
3. They are already smallest integers.
4. We can write $(\boldsymbol{h} \boldsymbol{k} \boldsymbol{i} \boldsymbol{l})=(\mathbf{1} \overline{\mathbf{2}} \boldsymbol{0} \mathbf{0})$
5. Using $i=-(h+k)$ relation, $i=1$.
6. Miller Index is $(\mathbf{1} \mathbf{2} 10)$

But note that the 4-index notation is unique....Consider all 4 intercepts: plane intercept $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$ and $\mathbf{c}$ at $1,-1 / 2,1$, and $\infty$, respectively.
Reciprocals are $1,-2,1$, and 0

- So, there is only 1 possible Miller Index is (1210)

MSE MSE 280: Introduction to Engineering Materials ©. ©.D. Johnson 2004, 2006-08



## SUMMARY

- Crystal Structure can be defined by space lattice and basis atoms (lattice decorations or motifs).
- Only 14 Bravais Lattices are possible. We focus only on FCC, HCP and BCC, i.e., the majority in the periodic table.
- We now can identify and determined: atomic positions, atomic planes (Miller Indices), packing along directions (LD) and in planes (PD).
- We now know how to determine structure mathematically.

So how to we do it experimentally? DIFFRACTION.

MSE
Clincis
©D.D. Johnson 2004, 2006-08 I

